NOTICE: Then goverment on other dravings, specificacions or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formilated, furnished, or in any way supplied the said drawings, specifications, or other data ia not to be regarded by impilation or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rigits or permission to manufacture, use or sell. any patented invention that may in any way be related thereto.

AVAIIABIE COPY WILL NOT PEGMIT EUIVY WGIBTE REPHCDUCMYN. REPRO: OL A ADE H REQLESE \therefore UY USHK OE DDC.

RESEARCH TRIANGLE INSTITUTE

Operations Research and Economics Division

OCD REVIEW NOTICE

This report has been reviewed in the Office of Givil Defense, and preparation in a form for limited distribution is approved. This approval does not signify that the contents necessarily reflect the views and policies of the Office of Civil Defense.

RESEARCH TRIANGLE INSTITUTE

: Durham, North Carolina FINAL REPORT
$\mathrm{R}-\mathrm{CJ}-1.54$
Cost and Protection Andlysis of NFSS Structures
Edwand L.: Rid 1 l and Carolyn M. Parker

22 Jamuary 1965

Prepared for
Office of Civil Defense
Department of Anny - OSA
under
Contract No. OCD-PS-64-56
Subtask 1115B

FTNAL REPOR':

$R-0 U-154$

Cost and Protection Analysis of NFSS Structures

Prepared for

- Office of Civil Defense

Departinent of Amy - OSA
urider
Contract No. OCD-PS-64-56
Subtask 1115B
by
Edward L. Hill and Carolyn M: Parker

RESEARCH TRIANGLE INSTIITUTE
Operations Research and Economics Division Post Offlee Box 490 Durham, North Carolina

ABSTRACT

This constitutes the final report of the research on area lactors and categorization of building structural characteristics which was complotod under Contract No. OCD-Pis-64-56 before management responsibilites were transferred to USNRDL.

A statistical study of National Fallout Shelter Survey Phase 2 building structural characteristics extracted from OCD files is reported. A total of 344 buildings of the original Phase 1 sample of 1541 (reported in E. Mill, et al. Analysis of Survey Data. Final Report R-OU-81. Durham; N. C.: Research Triangle Institute, 15 February 1964) was aurveyed by Architects-Engineers in the NFSS Plase 2. Included in these buildings are 1030 basement shelter areas, 262 first story shelter areas, and 838 upper story shelter areas. The modal value for basement sill hefghts is 5 feet; whereas 80 percent of the sill heights for the first stories are from 2 to 3 feet; and for upper stories 90 percent are from 2 to 3 feet. Parallel parti-. tions occur in 51 percent of the basement shelter areas, 63 percent of tho first story shelter areas, and 78 percent of the upper story shelter arcas. Crose parta. cions occur in 761 of the 2130 sheiter areas.
"Arsa factors" are multipliers used to estimate the fraction of the totel flgor area offering protection greater than a predetermined value "A unique"get of area factors which do not vary with structural details of the building are used in the NFSS. Several shortcomings of these approximate area factors are discussed: (1) cases in which center PF's are lower than offacenter PF's; (2) the effect of finteti. or partitions; (3) the effect of floor thickness; (4) the effect of apertures; and (5) sheltere with predominantly roof contribution. Analyses of shelters with only roof contribution and of shelters with both ground and roof contribution are presented. Methods of determining more nearly correct area factorg for each situation are given for use with simplifled hand computational procedures. Lastly, for more exact computations, i.t is recomended ifiat the shelter areg be calculated by computing pF's at several off-center locations and determining graphically the arcas which reach a prescribed PF .
Abstract i.i
Chapter 1. Summary 1

1. Introduction 1
II. Findings 2
A. Gategorization 2
B. Area Factors 2
Chapter 2 A Statistical Analysis of the Influence of Phase 2 Building Characteristics on Fallout Radialion Shielding. 14
I. Introduction. 4
II. Sample Characteristies. 5
III. Approach to Statistical Study in Phase 1 Categorization 7
IV. Phase 2 Categorization Procedures 9
A. Introduction. 9 "
B. Basemeut Areaways 9
C. Apexture Sill Heights 12
D. Interior Partitions 12
V. Data Analysis 15
A. Introduction. 15
B. Areaways. 15
C. Aperture Sill Heighto 16
D. Interior Partitiona 16
Clapter 3 Area Factors. 18
I. Introduction. 18
If: Limitations of Niss Area Factors. 19
III. RTI Investigations. 23
A. Method of Approach 23
B. Findings." 24
IV. Recommendations 31
References 32
Appendix A - Shelter Area and Bullding Part Tabulations by
Phase 2 Technical Shie1ding Characteristicg. $A=1$
Appendix B - Characteristics of Buildings Used in Area Factor Computations B-I
TAble Page
I Phase 1 and 2 Categorigation Sample Characteristtes 6
II NFSS Phase 1 Arca Factors. 18
III Area Factors - Roof Contribution Only 27
A-I Building Parts with Areaways Reported. A-3
A-II Areaways - All PF Categories A -4
A-III Areaways for PF Category 2 Shelter Areas A-5
A-IV Areaway for PF Category 3 Shelter Aress A-6
A-V Areaways for PF Category 4 Shelter Aresa A-7
A-VI Areaways for PF Category 5 Shelter Areas A-8
A-VII Areaways for PF Gategory 6 Shelter Areas A $=9$
A-VIII Areaways for PF Category 7 Sheiter Areas A- 10
A-IX Areaways for PF Category 8 Sheiter Areas A-11
A=X Sheltex. Areas with Sill Heights Reported A-12
A-XI Sill Heights in Basement Shelter.. Areas A-13
A-XII Sill Heights in Eirst Story Shelter Aress A. 14
A-XIII Sill Heights In Uppen: Story Shelter Areas 4-15
A-XIV Sheiter Areas with Purallel Partitions Reported. A. 16
A-XV Parallel Partitions in Basement Shelter Areag A-17
A-XVI Parallel Partitions in First Story Shelter Areas A-19
A-XVII Parallel Partitions in Uppar Story Shelter Areas $\mathrm{A}=21$
A-XVIII Total Cross Partitions Reported by Type (All Shelter Areas). A-23
A-XIX Shelter Areas with I'ypes 1-4 Cross Partitions Reported A-24
A-XX Gxoss Partitions in Basement Shelter Areas (l'ypes-1-4) A 25
A-XXI Czoss Partitions in First Story Shelter Areas (Types 1-4). A-29
A-XXII Cross Partitions in Upper Story Shelter Areas (Types 1-4). A-33

LIST OF FIGURES

FIGURE Page
1 NFSS Phase 2 Data Collection Form. 10
2 Code Number for Building Type. 14
3 Basement with Center PF Less Than Off-Center PF 20
4 Detector Locations For Area Factor Computations? 23
5 Variation of PF with Detector Location - All Roof Contribution 25
6 Area Factors - Roof Contribution Only 26
7 Variation of PF with Detector Location and Dose Source 28
8* Area Factors - Ground and Roof Contribution. 29
\qquad

Summaxy
T. TnTRODJCTTON

The OCD description of Subtask 1115B, Cost and Protection Analysis of NFSS
Structures, Contract No. OCD-PS-64-56, is as follows:
"Analyze Phase 2 data from the NESS to indicate relative importance of shielding charasteristics in order to improve $\mathrm{Pr}^{\text {c }}$ calculations and to indicate the most important modifications to fmprove PF Utilize this data and studles of resurxing types of key facilities under variuts beographic and conetruction condtions th identify the most critical engineering characteristics of the structioie which would require modification for occupancy and operation in a fallout. situation. Provide PF computational procedures for special. characteristics of those key facilities for the clectronic computer program."

The Research Triangle Institute was informed on 12 May 1964 that the $U . S$. Naval. Radiological Defense Laboratory (NRDL) was to have management responsibility Ior OCD Subtask 1115B. A new contract, N 228-(62479)-66109, was executed by NRDL for the completion of work begun under the original OCD contract.

This constitutes the final report of the research on area factors and building structural characteristics which was completed under contract No. OCD-PS-64-56 before management rosponsibilities were transferred to NRDI. The data presented In this report will be combined with the remainder of the research under OCD Suistask 1115B in a more comprehensive Report $R=0 U-196$ upon completion of the NRDL contract.

A. Caicgorization

 Phase 2 building structural charactoristirs are contained in Chaptor 2 and Appendix A. An analysis of building structural characteristics contajod in Phase 1 data was previously reported in Reference 1 . Thexefore, this study completes the evaluation of all building characteristics reported in the NFSS for an original sample of 1541 buiddings. A total of 844 bulldings of the original 1541 was surveyed by $A E ' s$ in the NFSS Phase 2. Included in this report is an analysis of the occurxence of Phase 2 data on areawayg, aperture sill heights, and interior partitions in both building parta and shelter accas. These data, classed by protection factor, are of interest in determining the correlation between structural data and protection from fallout radiation.

There were 1030 basement shelter areus, 262 first story shelter areas, and 838 upper story thelter areas, giving a total of 2130 shelrer areas reported. A total of 493 areaways were reported in 3.37 building parts, Sill heights reported for basements had a mode of 5 feet, whereas 80 percent of the aill heights reported for first stories were from 2 to 3 feet and for upper stories 90 percent were from 2 to 3 feet. Parallel partitions were reported for 51 percent of the basement shelter areas, 68 percent of the first story sheltex areas, and 78 percent of the upper atiory shelter areas. Cross partitions were reported for 761 of the 2130 shelter areas.

R. Area Factors

Area factors represent fractions of total floor areas offering protection greater than a predetermined value. For the intended objective of determining gross estimates of the total number of available shelter spaces by machine methods, the area factor approach used in the NFSS Phase 1 Computer program was excellent. However, j i is recommended that a careful analysis of each building
 sincler area ls made Severai sinoremings of area factors are discussed: cases in which center Pr's arc lower than offeconter Pr's; the effect of intericr partitions, floors, and apertures; and shelters with predominantly roof contribution. Analyses of shelters with all roof contribution and of shelters with both ground and roof contribution are presented. Methods of determining area factors for ench situation are giver. For more exact computations, it is recommended that actual shelter area be calculated by computing $\mathrm{PF}^{\mathbf{\top}} \mathrm{s}$ at points in adaition to the center and detemining the distances from the center that reach a prescribed PF.

Chapter 2

A Statistical Analysis of the Influence of Phase 2 Building Characteristics on Fallout Radiation Shielding

I. INTRODUCTION

Abstract

Stotistical data on bullding configurations. werc not avaloble witen the jviss (National Fallout Shelter Survey) Computer Program (Reference 2) was developed to calculate protection factors, Therefore, assumptions had to be made in this prograniregarding the importance of various building characteristics. Categorization of building structural characteristics of NFSS buildings is of interest in determining the correlation between structural data and protection from fallout radiation afforded by shelter areas* and builiding parts.

Under OCD Subtask 1115A, Analysis of Survey Data, RTI "categorized the surveyed structures" with respect to rechnical shielding characteristics. . ." For that subtask, RTI made a statistical study of building characterjstics which were reported on NFSS Phase 1 FOSDICS (Film Optical Senging Device for Input to Computers). The results of the study were reported in Cliapter 3 of the final report for Subtask 1115A. (Reference 1).

Cortain structural shielding charactarlstics such as areaways, apercure sill heights, and interior partitions were not fully reported in the NFSS Phase 1 data. These characteristics were reported in Phase 2; however, summarized Phase 2 data wore not available at a single location in time to be categorized in Subtask 1115A. Therefore, the purpose of this chapter is to complete the categorization of all technical ahielding characteristics reported in NFSS data.

[^0]Thu sample of Phase I data which was categorized in Subtask ill5A contained 1541 buildings. However, there are only 844 buildings jn the sample of Phase 2 data to be categorized. Phase 2 instructions state that all shelter areas surveyed in Phase 1 must be at least PF Category 2 or better for additional analysis in Phase 2. Therefore, 483 of the 1541 buildings in the Phase 1 sample were eliminated in the Phase 2 sample because they contained only PF Category 1 shelter areas. Also, Phase 2 data were not reported for 214 other bullinggs in the sample for one of the rollowing reascins:
1.. Permisaion to survey the building in Phase 2 was not given by the building owner.

2: The bullding had been destroyed since the Phase l' survey.
3. In most cases no analysis or cost estimates were made for shielding improvements above the firat story.

General characteristics of the flase 1 and Phase 2 data used in categorization and characteristics of their parent population are lyptod in Table I.

Phase 1 and 2 Categorization Sample Characteristics

1. Total number of shelter areas on M2 file (Total NFSS Phase 1) $=1,042,027$
2. Total number of buildings (Total NFSS Phase 1) $=308,130$
3. Total number of buildings rejected (Buildings containing no shelter areas rated 1 MPF Category 1 oi higher were rejected) $=73,646$
4. Total number of buildings in the Phase 1 sample $=1541$:
5. Total number of buildings in the Phase 2 sample $=844$
6. Total number of building parts in the Phase 1 sample $=2091$
7. Totai number of building parts In the Phase. 2 sample $=1167$
8. Total number of shelter areas (PF Categorjes 1 through 8) in the Phase 1 . sample $=4421$
9. Total number of shelter areas (PF Categories 2 through 8) in the Phase 2 sample - 2031
III. APPROACH TO STATISTICAL SIUDY IN PHASF 1 CATEGORIZATION

The statistical study made in caregorizing Phase 1 data was presented in Chapter 3 of the final raport for Suhtask l115A. In that study, a random sample of 1541 buildings was selected from the NFSS Phase 1 ML and M2 files (Reference 2), which are maintained at the National Bureau of Standards Computation Laboratory.

Statistical studies of detailed structural properties were made to determine the correlation between structural data and protection from fallout radiation. More specifically, the atudy involved preparation of statistical cabulations relating protection factors with the number of shelter areas (PF Category 1-8) and number of buildings falling within selected incremental ranges of certain structural characteristics. The specific structural characteristics studied for ahelter areas were:

1. story ${ }^{\text {Imber }}$
2. percent apertures
3. Interior partitions
4. floor area
5. wall mass thickness (psf)
6. contaminated plane width
7. dose source
8. percent basement exposure

The specific stryctural characterigtics studied for bulldinge were:

1. atory number
2. percent apertures
3. interior partitions
4. flour area
5. Wall mass tinickness (paf)
6. physical vulnerability (PV code)
7. number of building parts

	All data processing and calculations were performed on the National Bureau of Standards IBN 7090 computer. A tabular presentation of rhis study is given in Appendix E of Reference 1. It is expected that the tabulations of the above structural characteristics for the sample of 844 Phase 2 buildings would differ slightly from those for the sample of 1541 Phase 1 buildings. The tabulations for the 483 buildings in the Phase 1 sample that had only PF Category 1 shelter areas are readily identified; therefore, only the 21.4 buildings not included in the Phase 2 data for other reasons would modify the statistics. Because only slight modificationa are expected, it is not deemed essentlal to re-categorfze the Phase 1 data for the same 844 buildings that were evaluated in Phase 2 . Doing this would also be complicated by the fact that shelter area PE's were often changed in Phase 2 and there $i b$ merged record of Phase 2 PF data and Phase 1 structural data. Accord. ingly, it is recommended that where struchiral data are required for all NFSS Phase 2 buildings, they be based upon the analysis of Reference 2 after deletion of PF Category I shelter areas.

IV. PHASE 2 CATEGORIZATION PROCEDURES

A. Introduction

The gource of Phase 2 data is the Phase 2 DCF's (Data Collection Forms) (Figure 1) on which structural data were entered for the buildings by AE (architect-engineer) contxactors (Reference 3). These Phase 2 data were transferred to magnetic tape. by the Bureau of the Census. In order that RTI could categorize Phase 2 data, the Bureau of the Census prepared a printout from their magnetic tapes of the Phase 2 data for the 844 bulldings, 1167 building parts, and 2031 shelter areas (story of a building or building part) in the sample. Using this printout, RTI categorized the building parts and shelter areas with respect to areaways, aperture sili heights, and interior partitions. The data which were taken by hand from the printout are presented in Appendix A in tabu:ar form, with a fractional table computed for each element of data categorized. All fractions are runded to four significant figures.

B. Basement Areaways

Information concerning basement areaways is given in columns 70 through 76 of the Phase 2 DCF. Dara entered in these columns described the location, length, distance from corner, and width of basement areaways ant the height of window openings in the basement walls exposed by the areaway. RTI categorized the data.in columns 71,74 , and 75. Column 71 contains the length of the areaway, expressed to the nearest (estimated) 10 percent of the length of the side in which it was located, Columns 74 and 75 reported the width, to the nearest foot, of the areaway. Table A-1 of Appendix A shows the total number of building parts which had areaways reported. Tables are also presented for the total areaways in all PF categories (Table A-II) and for each Pr category (Table A-III - A-IX). The areaway information was tabuiated by width (from 2 to >10 feet) and by percent of building side length (0 through 90 percent).
Figure 1

NFSS Phase 2 Data Collection Form
NATIONAL FALLOUT SHELTER SURVEY
PHASE $3:$ acch paran -1 1-N-N N
 1 \cdots
 $-$ - ・ー:
 ',

Figure 1 (Contimazd)

C. Anerture Sill Heights

Aperture sill height data were entered by the $A E$'s in columns 54 through 57 of the Phasc 2 DCF. The predominant sill height, to the noarest foot, of the window openings (apertures) in exterior tall "A" through "D" above the appropriate floor level was entered in these columns by the AE's. If the wall under consideration had no apertures, an "x" was entered in the appropriate column.

Table A-X gives the total numbers of basement, first story, and upper story shelter areas in each PF category with sill heights reported. Data for sill heights reported in the basement, first, and upper stories are given in Tables A-XI through A-XIII. In these three tables, an average of the sill heights reported in the Phase 2 DCF columns 54 through 57 is tabulated by PF category. If an "x" appeared in columns $54,55,56$, or 57 , the column or columns were excluded from the average.
D. Interior Partitions

1. Parallel Partitions

The number and the average pef, estimated to the nearest 10 psf , of parallel partitions (Lnose partitions such as corridor walls extending parallel to Sides A, B, C, and D) were recorded by the $A E ' s$ fin the Phase 2 DCF columne 58 through 65. The total numbers of besement, first story and upper story shelter areas with paralle1 partitions reported are prem sented in Tablie. A-XIV by PF category. In order to categorize the pe parallel partition data by shelter areas, it was necessary to determine an average partition paf for each shelter arëa. Therefore, RTI multiplied the average psf reported for each of the four sides by the number of parallel partitions reported for that side, added these four products, and divided this total by four in order to get the average psf for eikch shelter area. These parallel partition data were categorized and are reported in Tables A-XV through A-XVII for basenent, Eirst, and upper stories by PF
category and average psf per shelter area.
2. Gross Partilions

Abstract

Cross partition (those partitions separating adjacent rooms and not recorded elsewhere) data are found in columns 66 through 69 of the Phase 2 DCF. The estimated average spacing in teet is found in columns 66 and 67. The average psf,estimated to the nearest 10 paf, is in column 68, The general pattern of the cross partition arrangement in the shelter area is indicated in column 69 using the code number for the type which corresponds to the one of the four general patterns presented in Figure 2 considered to best resemble the building part deacribed. RTI categorized the data found in columns 68 and 69. The numbers of each type cross particion reported are shown in Table A-XVIII and a breakdown by shelter area and PF category is given in Table A-XIX. These data were categorized separately for each type of cross partition (Types 1-4) by PF categery and average psf for besements, first, and uppex atorles and reported in Tables A-XX through A-XXII.

V. DATA ANALYSIS

A. Introduction

The Phase 2 data categorized in this report coniained 844 buildings and 1167 building parts. In these building parts, there were 1030 basement shelter areas (story in a building or building part); 262 first story shelter areas, and 838 upper atory shelter areas, giving a total of 2130 shelter areas reported. It is interesting to note that 1030 (88 percent) of the 1167 building parts in the Phase 2 sample have basement shelter areas which account for 48 percent of the total shelter areas. The Phase. 1 data indicated that 81 percent of the building parts contained basement shelter areas (PF Category 1 through 8). The increased percentage of basement shelter areas in Phase 2 is expected because of the number of Phase 1 upper story shelter areas in PF Category 1 which were not further evaluated in Phase 2.

As stated previously, this report presents a categorization of areawaya, aperture-sili heights, andinterior partitions contained in the Phase 2 data printout which RTI obtained from the Bureau of the Census. A few of tha more interesting facta noted in categoriaing these technical shielding characteristics are diacussed balow.

B. Areaways

There were 493 . Ereaways reported by the $A E$'s for the 844 buildinge categorized In this chapter, of the 1167 buliding parts reported, 337 have one or more areaways. A total of 109 of these building parts had areaways reported on more than one building side. It is interesting to note that seven areaways were reporced with their percent of building side length from 0.5 percent. The number of areaways reported are rather evenly dispersed for adjacent shelter areas in pF Category 2 through 8. These areuways are reported in Appendix A with widths ranging from 2 io: 10 feet; howevor, a definite trend toward narrow widths is shown by the fact
that 437 of the 493 areaways reported have widths of from 2 to 6 feet. These data indicate the importance of including areaway contributions in basement PF computations.
C. Aperture Sill Heights

In basement shelter areas, the average aperture sill heights reported are rather evenly dispersed from 0 to 9 feet with a mode of 5 feet. However, 80 percent of the sill heights reported for first stories are from 2 to 4 feet and for upper story shelter areas 90 percent are from 2 to 3 feet high. For upper stories, there were no.sill heights reported higher than 5 feet. Sill heights were reported for only 625 of the 1030 basement shelter areas categorized; however, it is more interesting to note that 56 of the 262 first story shelter areas and 19 of the 838 upper story shelter areas had no sill heights reported, thereby indicating no apertures for these 75 shelter areas. This would cause the shelter area to have.: higher $P F^{\prime} s$, but it also means that t^{\prime} ise areas would require additional ventilation to be eligible for marking at 10 square feet per shelter space,

D. Interiot Partitioris

1. Parallel Partitions

Paralei partitions are reported in Appendix A with average paf (pounds per square foot) per shelter area (see Section IV.D.1.) of from $5: t 0>300$ psf. Parallel partitions were reported for 525 of the 1030 basement shelter areas (51 percent); 178 of the 262 first story shelter areas. (68 percent), and 656 of the 838 upper story shelter areas (78 percent.). In the NFSS Phase 1 categorization sample, only 17 percent of all shelter areas had interior partitions reported. The numbers of parallel partitions reported in Phase 2 are rather evenly dispersed by average psf for basement, first, and upper shelter areas. They also have a medign of 25 gsf for bagement shelter areas, 32,5 pisf fir first atory shelter areas, and 25 psf for upper story shelter areas.

Cross partitions were reported for 761 of the 2130 shelter areas categorized. Of̈ these cross partitions, there were 245 reported for basement shelter areas, 98 for first story shelter areas, and 418 for upper story shelta, areas.

There were four types of cross partitions reported on the Phase 2 DCF's (see Figure 2). For basement shelter areas, 89 percent of the cross partitions reported are Type 1 or Type 2 partitions. In the firat story shelter areas, 60 percent are Type 2 partitions, "Finally, for upper story shelter areas, 72 percent are Type 2 or Type 4 partitions. Of the 761 shelter areas with cross partitions reported, 48 percent are Type 2 . It should be noted that of the total cross partitions reported only 9 percent are Type 3 partitions.

The croas partitions are eategorized by $\overline{\mathrm{PF}}$ category and average psf. (see Section IV.D.2.), as well as by type. For all PF Categories (2 through 8), the different types of sxoss partitions are rather evenly dispersed Irom 10 through 90 pef. The median psf for all typas 1 s 40 pef for basements, 30 psf for first stofies, and 30 pgf for upper stories. The modal pof for all types $i s 90$ psf for basements, 30 psf for first stories, and 30 psf for upper storles.

Chapter

Area Factors

I. INTRODUCIION

The protection factor (PF) computational procedure (Reference 2) of the National Fallout Shelter Survey (NFSS) used area factors to repregent fractions of total floor areas offering protection greater than a predetermined value. The area factors used in the NFSS, shown in Table IT, for shelters in PF Category 448 (PF 100 to >1000) are based on the extent of the area which does not drop below PF 100; for shelters with a center PF within PF Category 1-5 (PF 20 to 99), area factors are based on shelter areas with a perimeter PF of approximately 70 percent of the $\mathrm{S}-\mathrm{AREA}$ center PF .

TABLE II
NFSS Phase 1 Area Factors

PE Category

$6-8$	$250-$ over 1000	$1: 0$
5	$150-249$	0.7
4	$100-149$	0.3
$1-3$	$20-99$	0.5

This chapter presents analyses of the effecfis of building characteristics and combinetions of ground and roof contributions on the usable ahelter area of a building.

II. LIMITAIIIONS OF NFSS AREA FACTORS

The NESS grea factors represent usable areas in the first story of a windowless square building receiving only ground contribution. A previous RTI evaluation of area Eactors under $O C D$ Subtask 1115 A (Reference 1) for this type of structure indicated that the area factors presented in Tabla II are significancly conservative (from . 1 to . 2 added for each factor) when compared to regults of the Engineering Manual procedure (Reference 4).

For the intended objective of determining gross estimates of the total number of available shelter spaces by machine methods, the area factor approach is excellent, Howevor, a careful analysis of each building in question should be made before final determination of the actual area of the sheiter is made. The considerations that must be made for an actual building are:

1. Genter PF - All appiications of area factorg are based on the PF at the centex of a building. This means that if the center PF is not in PF Category:2-8, no area factor 1s appiled and the entixe atory 1 a conadered to have a PF less than the center PF, In reality, Ehis asaifiption may be wrong. Because of mutual shielding, inregularly apaced interior partitions, grade level, etc., the PF might be higher at the end of a building story than at the center. An iliustration of a basement with a center PF possibly less than the offecenter PF is given in Figure 3.
2. Interior Particions - If a building contains interior partitions, the PF may drop rapldiy outside the area bounded by partitions. In Phase 1 of the NFSS the location of partitions was not given unless a core was reported, A core ia defined in Reference 5 as "a central portion of a story surrounded on two or more sides by interfor partitions of heavy construction.". Cores were reported in Phase 1 for only the first and second stories of a building and allowed only one partition per building side to be noted.

FIGURE 3

Basement with Center PF Less than OffmCenter PF
(PF's in Parentheses)
1
 partitions may be quite different from one for a building with no partitions. For example, jf the area bounded by partitions in a story with a center PF in Category 4 is greater than. 3 (Category 4 area factor) of the cotal floor area, the area of the shelter very likely extends to the partitions rather than just 3 of the total area. It is ahown in Chapter 1 that approximately 78 percent of the NFSS Phase 2 upper story shéter areas have parallel partitions. This in itaelf is reason to believe that substantial increases in total shelter area might be gained through use of a PF computational procedure that would consider the location of Interfor partitions and give PF results at points other than the center of the building.
3. Floor Thickness - The majozty of butidinge in the NFSS and all those surveyed by RTI axe exposed to limited planes of contamination. An RTI statiatical atudy of NFS Phase 1 data (Raference 1) Indicated the modal width of the cotal planes of contamination contributing to a shelter atory to be less than 60 feat for every PF category. Because of these narrow planes of contamination, the thickness of fioors for stories above grade is an important parameter to consider when determining the total area of the ahelter. Die to the narrow planes of contamination, ground contribution to storles above grade often must penetrate the floor below the detector. The PF is therefore quite dependent on the mass thickness of the floor through which the radiation must penetrate. For example, for a plane less than 300 feet wide, Technical Operations Research determined that the dose rate at an uppar story corner position in a windowless building with light floors $\left(X_{f}=20 \mathrm{psf}\right)$ was 1.4 timea that at the center position whereas it was 2.5 fifues greater than that at the center for thick floors ($\mathrm{X}_{\mathrm{f}}=80 \mathrm{psf}$) (See Table 42 of Reference 5).

4: Anertures - Frevious RTI analy bes of aperture contributions in a square building indicated that the usable area of a shelter depends on the percentage of apertures (Reference 1). For example, on the second floor of a 5000 square foot hypoihetical building with a center pF of 125 , the fraction of the area having a protection factor greater than 100 is 0.43 with no apertures and increases to 0.56 with 10 percent apartures. When aperm tures were" added, the wall mass thickness was increased to maintain a center PF of 125.
5. Roof Contribution - In shelters where the predominant contribution comes from ground sources surrounding the building, the center of an above-ground shelter should be the polnt with the highest PF. The PF would dearease closer to the exterior wall. However, when roof or ceiling contribution is also present, the shelter may be quite different in size and location from thet with no sueh contribution. For examplaj with the predominant contribution coming from the roof, the safest maxewould be cloeste to the axterfor wall and the PF would decrase as the center is approsohed. Upper stories of high rlse bulldings, as well as basementa, are sheliter areas where roof contribution can often axceed ground contribution,

III. RTI INVESTIGATIONS

A. Method of Approach

Using Engineering Manual and AE Gulde (Reference 7) procedures, RTI made numerous computations to determine the range of PF's fir various size buildings subjected to combinations of roof and ground contributions. After the exterior wall mass thickness giving a desired center PF in a building was determined, computations were made for 6 other points in the building as illustrated in Figure 4.

Points 1 and 2, 3 and 4, and 5 and 6 are on the perimeter of areas arbitrarily taken to be equivalent to 30,50 , and 70 percent, respectively, of the total building area. These points are located at approximacely $54.8,70.7$, and 83.7 percent of the distance from the center perpendicular to the exterior wall and from the center to the corner.

FIGURE 4
Detector Locations for Area Factor Computations

Roof contributions were determined by the Engineering Manual Method; ground contributions by the $A E$ Guide which assumes all areas to be square. Calculations were made for buildings with the characteristics given in Appendix B.
B. Findings

1. Roof Contribution Only

Using the same structural datarequired to give a desired PF in the center of a square building, Engineering Mandial PF computations were made for the 6 pointa shown in Figure 4. These data were then plotted as illustrated in Figure 5 in order to determine by interpolation the boundaries of the area with a selected PF. The illustration shows the distances from the center of a 10,000 square foot builaing to points where the PF reaches 100 on a line perpendicular to the exterior wall (1ine through points 1,3 , and 5 of Figure 4) and on a diagonaline (points 2, 4, and 6).
'ryese pointes determine the boundaries of the area having a PF of at least 100 within a building story and it was thus possible to calculate the area of the shelter. For the case of all roof contribution the shelter is adjacent to the exterior walls and not in the center of the building. Very little variation was noted in the usable shelter, expressed as a percent of the total area, for bulldings in the $2,500-10,000$ square foot range.

Conservative area factors for buildings with all roof contribution are given in Table IJI and they are graphically presented in Figure 6. These area factors may also be used for rectangular shaped buildings when the $A E$ Guide procedure, which does not consider the building shape, is used. This is because a rectangular building with the same area and conatriction characteristics as a square building will have less roof contribution.

Variation of PF with Datactor Location - All Roof Contributica
(10,000 Squere Foot Buildigg - Center RF of 85)

FIGURE 6

Area Factors - Roof Contribution Only

Area Factors - Roof Contribution Only

	PE Category	Area Factor
Area Greater Than PF 100	- $4-8$	1.00
	3	. 56
. . .	2	. 18
Area Greater than PF 40	2-8	1.00
	1	. 26

If the center PF is known, it is possible to find the approximate boundaries of any shelter area through the use of Figure 6. It is important to note that shelter areas with a center PF less than 40 and raceiving predominantly roof contribution still have considerable area of PF 40 or better.

2. Ground and, Roof Contribution

Most stories of structures receive some combination of ground and roof contribution. Therefore, area factors for this type of atructure are very important in detemining the shelter axea of a atory.

Yarious combinatione of ground and roof contributions, ranging from all ground to all roof, wexe calculated for uppar storios of the hypothetical building a described in Appendix B. The contributions for each bullding' size and center PF wẹre ploted as shown in Pigure 7. This figure 111ustrates the variations in PF on a inn from the center perpendicular to the exterior wall in a 10,000 square foot aida with a center PF of 85 . Similar graphs were prepared for PF's ou a line from the center of the building to the corner of the building. The boundaries of shelter area within a givan PF range were then determined from these charts.

As was found for all roof contribution, the shelter areas were fairly insensitive to changes in cotai buildiug areá, Therefore, conservative data were again used and are presented in Figure 8 to show the area of a

Area Pactors - Ground and Koof Contribution

(Areas Creater than PF 100)

Note: For center PF's less than 100 , the
shelter area is closest to the exterior walls.

story with a PF of 100 or bether when expesed to infinite planes of con. tamination. This figure shows the area faciors lior any combination of ground and roof contribution when the center TF is known. This is therefore a very valuable figure for use with a simplified procedure such as che AE Guide.

iv. RECOMENDATIONS

For simplificd hand computational procedures where only a center PF is arrorally colculatud, it is recommended that Figure 8 be used to determine the Mra wi h a PF of 100 or moro.

Due to the complexities of the combined effects of apertures, interior partitions, floor thickness, etc, the area of shelter in buildings of similar size with the same conter PF can be quite different. The PF computational proceduro which has beer programmed by RTI mider Coni.ract No. OCD-PS-64-65 for use on a Control Data Corporation CDC 3600 Computer therefore does not use prea cletermined area factors. The $P F$ is calculated at the center and at 8 predetermined offecenter detector locations, which allows the computer to determine the approximate arcas of building having a PF of a predetermined value, The effect of each of the above characteristics is therefore considered in each building.

REFERENCLS

1. E. .. Hill, K. K. (irngan, R. D. Leday, and II. G. Anmont. inalysis of Smpey
 Friangle Institute, Operations Research Division, 15 February 1964.
2. Yational Burean of Standards. Description of Computer Program for National Fallout Shefrer Survey, National Bureat of Standards Repurt No. 7826. Fashington: U. S. Department of Commere, 15 March 1.963.
3. Office of Chief of Engineers. Fallout Shelter Survey Instructions (Phase 2 Data Collection Form Instructions). Washington: Office of the Chief of Engineers; U. S. Army, 21 March 1962.
4. Office of Civil Defense. Design and Review of Structures for Protec̈tion From Falloat Gama Radiation. (Engineering Manual). Revised Edition. Washington: Office of Civil Defense, Department of Defense, 1 October 1961.
5. OCfice of Civil Defense. Instructions for Filling Oat DD Form 1356 (1 Nov. 61); Nathonal Fallout Shelter Survey - Phase 1. Washington: Office of Civil Defense, Department: of Defense, 1 December1961.
6. John F. Battor, Albert W. Starbird, and Nancy-Ruth York. Final Report - The Effect of Limited Strips of Contamination on the Dose Rate in a Multi-story WIndowless Building. Report Noi To-B 62-58. Burlington, Massachusets: Technical Operationc, linc., August 1962.
7. Office of Givil Defense.: Fallout Siclter Surveys: Guide for Architects and Engineers. Washington: Office of Civil. Defense, Department of Defense, December 1961.

This appendix presents in tabular form the categorization of the Phase 2 structural data for a statistical sample of 844 buildings. Shelter areas and building parts are categorized by aranways, aperture sill height, and interior partitions. These data are presented in tables in the following order:

Areaways

TABLE A-I Building Parts with Areaways Reported
TABLE A.II Areaways - All PF Categories
TABLE A-III Areaway for PF Category 2 Shelter Areas
TABLE A-IV Areaways for PE Category 3 Shelter Areas
TABLE A-V - Areaways for PF Category 4 Shelter Areas
TABLE A-VI. Areaways for PF Category 5 Shelter Areas
TABLE A-VII Areaways for PF Category 6 Shelter Areas
TABLE A-VTII Areaways for PE Category 7 Shelter Areas
TABLE A-IX \therefore Areaways for PF Category 8 Shelter Areas
Aperture Sill Heights
TABLE A-X Shelter Areas with Sill Heights Reported
TABLE A-XI SIIL Heiphten in Bagement-Shelter Areas
TABLE A-XII Sill lloights in First Story Shelter Areas
TABLE A-XIII S111 Holghts in Upper Story Shelter Areas
Parallel Partitions
TABLE A-XIV Sheiter Areas with Parallel Partitions Reported
TABLE A-XV Parailel Partitions In Basement Shelter Areas
TABLE A-XVI Farallel Partitions in First Story Shelcer Areas
TABLE A-XVII Parallel Partitions in Upper Story Shelser Areas

Cross Partitions

TABLE A-XVIII Total Cross Partitions Reported by Type (All Shelter Areas)	
TABLE A-XIX Shelter Areas with Types 1-4 Cross Partitions Reported	
TABLE A-XX Cross Partitions in Basement Shelter Areas (Types 1-4)	
TABLE A-XXI	C:oss Partitions in First Story Shelter Areas (Types 1-4)
TABLE A-XXII Cross Partiting in Upper Story Shelter Areas (Types 1-4)	

TABLE A-I

TABLE A-II
Areaways - All PF Categories

tagile a-IV
Areaways for PF Category 3 Shelter Areas

TABLE A-VI
Arearays for PF Category 5 Shelter Areas

table A-vili
Areaways for PF Category 7 Shelter Areas

Total
625
.6068

$\begin{array}{ll}\infty & \text { N } \\ \infty & \text { O. } \\ \infty\end{array}$
TABLE A-X
Shelter Areas with Sill Heights Reported

table A-XI

- A-13 -
table a-XII

Sill Height	2	\because	4	EF Cat 5	6	7	8	Total
				NUM				
0	11	0	3	3	0	0	0	17
1	3	1	2	0	0	0	0	6
2	19	3	11	4	0	0	1	38
3	31	13	18	10	3	4	1.	80
$\therefore 4$	13	4	15	4 -	6	1	3	46
5	1	1	2	2	1	0	0	7
6	2	1	1	1	0	0	1	6
7	2	0	$=0$	0	0	0	0	2
8	0	0	0	0	0	0	0	0
9	2	0	1	0	1	0	0	$\frac{4}{206}$
				frac				
0	:053	0	. 0146	. 0146	0	0	0	. 0825
1	. 014	. 0049	. 0097	0	0	0	0	. 0291
2	. 092	. 0146	. 0534	. 0194	: 0	0	. 0049	. 1845
3	. 150	. 0631	. 0874	. 0485	. 0146	. 0194	. 0049	. 3884
4	. 063	. 0194	0728	. 0194	. 0291	". 0049	. 0146	. 2233
5	. 004	. 0049	. 0097	. 0097	. 0049	0	0	. 0340
6	¢. 009	. 0049	. 0049	. 0049	0	0	. 0049	. 0291
7	. 009	0	0	0	0	0	0	. 0097
8	0	\bigcirc	0	0 :	0	0	0	0
9	. 009	0	. 0049	0	. 0049	0	0	$\frac{.0194}{1.0000}$

table a-xv (Continued)

(panutinoj) IAX-* GTqVI

- A-20 -
Parallel Partitions in Upper Story Shelter Areas

$\stackrel{\rightharpoonup}{5}$ $\stackrel{\rightharpoonup}{6}$ ∞ \bullet * N	

Total ∞ ω ©	

table f-XIX

tabie A-XX
Cross Partitions in Basement Shelter Areas
(Type 1)

Total ∞ $*$ m N	
$\begin{aligned} & \text { on } \\ & \text { 品 } \\ & \text { 荡 } \\ & 0 \\ & \vdots \end{aligned}$	

TABLE A-XX (Continued)

TABLE A-XXI (Contimued)

table a-xijil (Continued)

1

PF computations were made for the $s \perp x$ points shown in Figure 4 of Chapter 3 for the fifth story of a square, seven story, windowless building exposed to Infinite planes of contamination. Thesa computations were made using the same structural data required to give a desired PF in the center of the building. For ground contribution, uaing the $A E$ duide, a height correction factor of 0. 5 . was used. For roof contribution, using the Engineering Manual, the distance from the detector to the roof (2) was 27 feet. Beaauee of no apertures, there was no floor weight correction factor required,

The wall and overhead mass thickneases uged for given center PFIs ir the various sized buildings aubject to combinations of roof and ground contribution were:

1. Excesior Walls

2. Overhead

5,000	55	95	109	124	155	-
	85	114	126	144	178	-
	125	130	142	161	191	-
7,500	55	98	111	126	157	-
	85	117	128	146	180	-
	125	132	144	162	192	-
10,000	55	1.00	113	1.27	158	-
	85	119	130	147	181	-
	125	133	145	163	193	-

DOCUMENT CONTROL DATA - R\&D
(Security clasaification of tllle. body of aboisact and indexing sntatation must bo ontored when the overall report is classified)

- ORIGINATINGACTIMYY (Coporate authar) Research Triangle Institutc	2a. riport security classification Unclassified
Post Office Box 490	2b group
Dizhain, Nos ilı Cacolina	

Durhaim, Nos Lh Caculina
a REPORT TITIE
COST AND PROTECTION ANALYSIS OF NFSS STRUCTURES
4. Descriptive notes rype of teport and inctusive dates)

Final Report
5 AUTHOR(S) LLasi name. Arsi name initial)
Hi.11, Edward L.
Parke: , Carolyn M.

13 anstangt This constitutes the final report of the research on area factors and cat. agorization of building structural characteristics which was completed under con. tract No. OCDaPS-64-56 before management responsibilities were transferred to USNRDH.

A statistlcal study of NFSS Phase 2 building structural characteristics extracted from OCD files is reported. A total of 844 buildings of the original Phase 1 sample of 1541 was surveyed by AE's in the NFSS Phase 2. Included in these building are 1030 basement shelter areas, 262 first story shelter areas, and 838 upper story shelter areas. The modal value for basement sill heights is 5 feet; whereas 80% of the sill heights of the first stories are from 2 to 3 feet, and for upper stories 90% are from 2 to 3 feet. Parallel partitions occur in 51% of the basement shelter areas, 68% of the first story shelter areas, and 78% of the upper story shelter areas. Cross partitions occur in 761 of the 2130 shelter areas.
"Area factors" are nultipliers used to estimate the fraction of the total floor area offering protection greater than a predetermined value. A unique set of area factors which do not vary with structural details of the building are used in the NESS. Several shortcomings of these approximate area factors are discussed: cases in which center PF's are lower than off-center PF's; the effect of interior partitions, floor thickness, and apertures; and shelters with predominantly roof contribution. Analyses of shelters with only roof contribution and of shelters with both ground and roof contribution are presented. Methods of determining more nearly cor rect area factors for each situation are given. For more exact computations, it is recommerded that the shelter area be calculated by computing PF^{\prime} s at several offcenter locations and determining graphically the areas which reach a prescribed PF .

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontrautor, ktates, Department of Defense activity or other organization (corporate author) issuing the report.
2A. REPORT SECUFTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Dats" Is included. MarkIng is to be in accordance with appropriate security regulations,
2h. GROUP: Automatic downgrading is specified in DoD Directive 5 200, 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that aptional markings have been used for Group 3 and Group 4 as author1zed
2. REPORT TITLE: Enter the complete report tille In all copital letters. '「ities in all cases should be unclassified. If a menningful title cannot be selected without clasglficaton, show title classification In all caplials in parenthests immediately following the tille.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a speciflc reporing perlod is covered.
4. AUTIIOR(S): Enter the name(a) of author(s) as shown on or In the report. Enter last name, first name, middle initlal, If military, ahow rank and branch of service. The name of the principal author is an absolute minimum requirement.
5. REPORT DATE: Enter the date of the report as day, month, year; or mutith, year, If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i, e., enter the number of pages containing information
7b. NUMBER OF REFERENCES; Enter the total number of referencea cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was writter.
8b, 8c, \& 8d. PROJECT NUMBER: Enter the appropriate military department identlfication, such as project number, subproject number, system numbers, task number, etc.
9a. ORIGINATOR'S REPOR' NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originatirg activity. This number must be unique to this repart.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s)
6. AVAIL ABILITY/LIMITATION NOTICES: Enter any IImitations on further dissemination of the report, other than those imposed by securliy classificailon, using standard statements such as:
(1) (Qualified requesters may obtain copies of this reporl from DDC ${ }^{11}$
(2) "Forelgn announcement and disgemination of this report by DDC is not authorized."
(3) " ${ }^{4}$, S, Gavernment agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain coples of this report directly from DDC. Other quallfled users shall request through :
"All distribution of this report is controlled Qual ified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indcate this fact and ent or the price, if known
11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Ent er itre name of the departmental project office or laboratory sponsoring (pay= Ing for) the research and development. Include address,
13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classifiod reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragrapis, represonted as (TS), (S). (C), or (U).

There is no limitation on the lempth of the nbstract. However, the sumgested length is from 150 to 225 words
14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index cotrica for cotaloging the roport. Kny whete ming he andecred so that no security classification is required. Iden-「iers, such as equipment model designation, trade name. nililary project code name, geoferabic location, may be used as key words but will be followed by an indication of technical context. The atssipument of links, rules, and weights is "ptional.

 .

-

[^0]: * It is important to note that shelter areas are stories containing shelter in a building or building part. Thus, a "shelter area", as used in this chapter is not necessarily the entire extent of NFSS shelter in a single story of a building.

